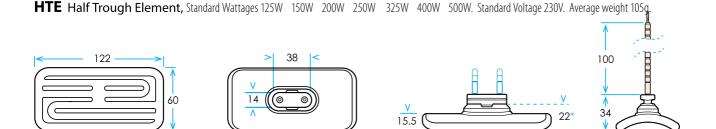
Product Guide

Ceramic elements

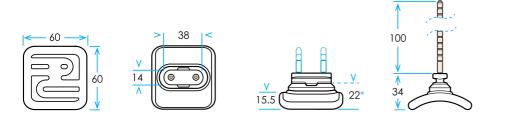
Ceramic trough elements	36
Ceramic hollow elements	38
Ceramic flat elements	40
Ceramic edison screw elements	42

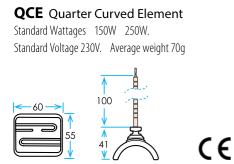
Quartz elements

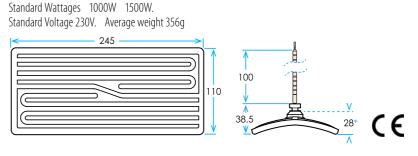
Quartz elements	44
Panel heaters	46
Single tube quartz heaters	46
Quartz tungsten / halogen tubes	48
Reflectors and projectors	50
Fast IR	52
Accessories	54

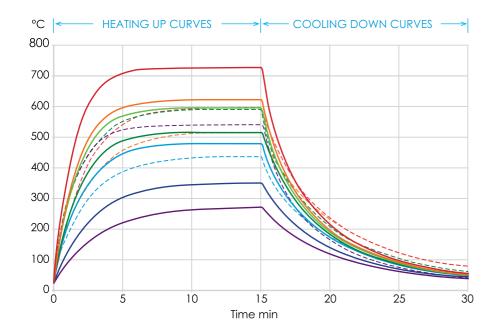


CERAMIC TROUGH ELEMENTS


Useful wavelength range 2 to 10µm


(FTE/HTE/QTE) are industry standard curved ceramic infrared heaters used in a wide range of industrial, commercial and domestic applications. These solid cast elements consist of a high temperature FeCrAL resistance alloy embedded in a specially formulated ceramic body allowing operating temperatures up to 750°C and a maximum power of 1000W (FTE Model Only).




QTE Quarter Trough Element, Standard Wattages 125W 250W. Standard Voltage 230V. Average weight 65g.

LFTE Large Full Trough element,

Heating up cooling down curves based on FTE tests of average surface temperature with an infrared thermometer set at an emissivity of 0.9 (element mounted in an aluminised steel reflector, RAS)

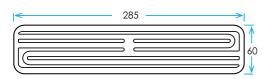
	FTE	HTE	QTE
_	1000W	500W	250W
_	750W		
_	650W	325W	
—	500W	250W	125W
_	400W	200W	
_	250W	125W	
_	150W		

Wattage	150W	250W	300W	400W	500W	650W	750W	1000W
Mean surface temperature	272 °C	351 °C	405 °C	480 °C	515 °C	596 °C	624 °C	726 <i>°</i> C
Max power density	9 kW/m²	15 kW/m²	18 kW/m²	24 kW/m ²	30 kW/m ²	39 kW/m ²	45 kW/m ²	60 kW/m²
Radiant Watt density at 100mm	0.10 W/cm ²		0.26 W/cm ²		0.48 W/cm ²	0.69 W/cm ²		1.14 W/cm ²

Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.95 (element mounted in an aluminised steel reflector, RAS)

Wattage	125W	150W	200W	250W	325W	500W
Mean surface temperature	351 °C	405 °C	480 °C	515 °C	596 °C	726 <i>°</i> C
Max power density	15 kW/m²	18 kW/m²	24 kW/m ²	30 kW/m ²	39 kW/m²	60 kW/m²
Radiant Watt density at 100mm		0.26 W/cm ²			0.69 W/cm ²	1.14 W/cm ²

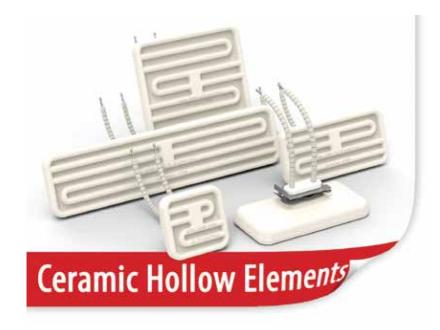
Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.95 (element mounted in an aluminised steel reflector, RAS)


250W	125W	Wattage
726°C	515 °C	Mean surface temperature
60 kW/m ²	30 kW/m ²	Max power density
1.14 W/cm ²		Radiant Watt density at 100mm

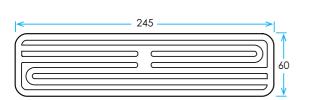
Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.95 (element mounted in an aluminised steel reflector, RAS)

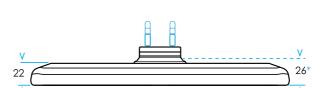
FTEL-LN Full Trough Element Long - Long Neck,

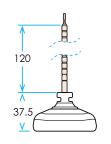
Standard Wattage 1000W. Standard Voltage 230V.



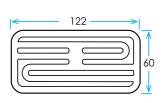
All dimensions mm Tolerances apply

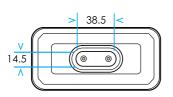


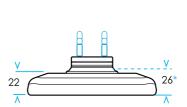

CERAMIC HOLLOW ELEMENTS

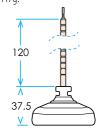

Useful wavelength range 2 to 10µm

Ceramic Hollow Elements (SFEH, FFEH, HFEH, QFEH) are industry standard ceramic emitters used in a wide range of industrial, commercial and domestic applications. The hollow constructed ceramic element has the advantage of having a shorter heat up time combined with increased energy efficiency. These hollow constructed products consist of a high temperature FeCrAl resistance alloy embedded in a specially formulated light weight hollow cast ceramic body which is subsequently filled with a high density insulating material. This results in a significant reduction in rear heat loss and increased radiant output from the front of the element, the operating temperature is up to a maximum of 750°C and a maximum power of 800W (FFEH Model Only)

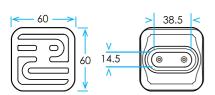

FFEH Full Flat Element Hollow, Standard Wattages 250W 400W 500W 600W 800W. Standard Voltage 230V. Average weight 250g.

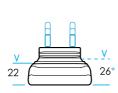


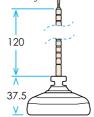


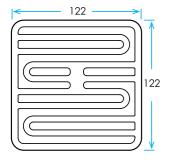


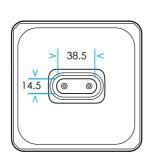
HFEH Half Flat Element Hollow, Standard Wattages 125W 200W 250W 300W 400W. Standard Voltage 230V. Average weight 117g.

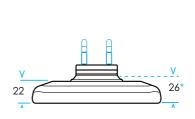


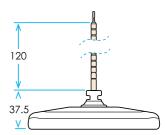


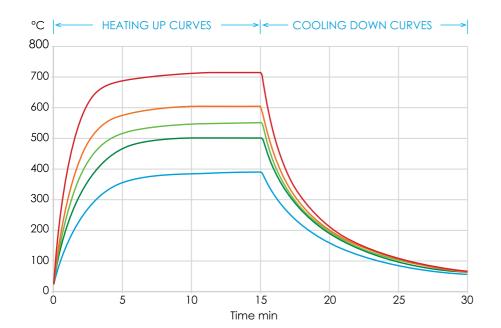



QFEH Quarter Flat Element Hollow, Standard Wattages 125W 200W. Standard Voltage 23QV. Average weight 75g.








SFEH Square Flat Element Hollow, Standard Wattages 250W 400W 500W 600W. Standard Voltage 230V. Average weight 239g.

Heating up cooling down curves based on FFEH tests of average surface temperature with an infrared thermometer set at an emissivity of 0.9 (element mounted in an aluminised steel reflector, RAS)

	FFEH	HFEH	QFEH	SFEH
-	800W	400W	200W	800W
-	600W	300W	125W	600W
-	500W	250W		500W
-	400W	200W		400W
_	250W	125W		250W

Wattage	250W	400W	500W	600W	800W
Mean surface temperature	390 °C	497 °C	548°C	602 °C	710°C
Max power density	15 kW/m²	24 kW/m ²	30 kW/m ²	36 kW/m ²	48kW/m ²
Radiant Watt density at 100mm	0.25 W/cm ²	0.44 W/cm ²		0.73 W/cm ²	

 ϵ

Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.95 (element mounted in an aluminised steel reflector, RAS)

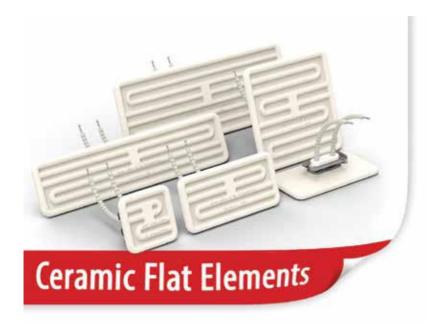
Wattage	125W	200W	250W	300W	400W
Mean surface temperature	390 °C	497 °C	548 °C	602 °C	710°C
Max power density	15 kW/m ²	24 kW/m²	30 kW/m ²	36 kW/m ²	48kW/m²
Radiant Watt density at 100mm		0.31 W/cm ²		0.49 W/cm ²	

 ϵ

 $Based \ on \ tests \ of \ average \ surface \ temperature \ with \ an \ infrared \ thermometer \ set \ at \ an \ emissivity \ of \ 0.95 \ (element \ mounted \ in \ an \ aluminised \ steel \ reflector, RAS)$

Wattage	125W	200W
Mean surface temperature	548 °C	710°C
Max power density	30 kW/m²	48kW/m²

 ϵ

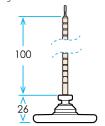

Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.95 (element mounted in an aluminised steel reflector, RAS)

Wattage	250W	400W	500W	600W	800W
Mean surface temperature	390 °C	497 °C	548 °C	602 °C	710°C
Max power density	15 kW/m²	24 kW/m²	30 kW/m ²	36 kW/m ²	48kW/m²
Radiant Watt density at 100mm	0.28 W/cm ²	0.51W/cm ²		0.81 W/cm ²	1.18W/cm ²

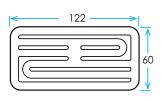
 ϵ

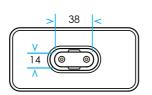
Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.95 (element mounted in an aluminised steel reflector, RAS)

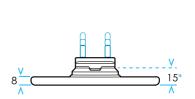
CERAMIC FLAT ELEMENTS

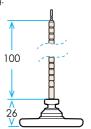

Useful wavelength range 2 to 10µm

Ceramic IR Flat Elements (FFE/HFE/QFE) are industry standard ceramic emitters used in a wide range of industrial, commercial and domestic applications. These solid cast ceramic elements consist of a high temperature FeCrAl resistance alloy embedded in a specially formulated ceramic body allowing operating temperatures up to 750°C and a maximum power output of 1000W (FFE Model Only). The solid cast heater body is flat, producing a diffuse radiant output to target distance in some applications.

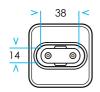

FFE Full Flat Element, Standard Wattages 150W 250W 300W 400W 500W 650W 750W 1000W. Standard Voltage 230V. Average weight 182q.

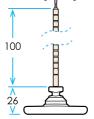




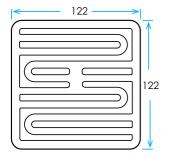


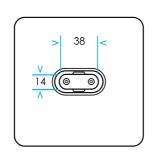
HFE Half Flat Element, Standard Wattages 125W 150W 200W 250W 325W 500W. Standard Voltage 230V. Average weight 105g.

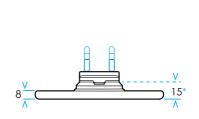


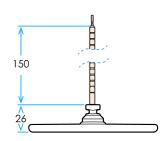


QFE Quarter Flat Element, Standard Wattages 125W 250W. Standard Voltage 230V. Average weight 65g.

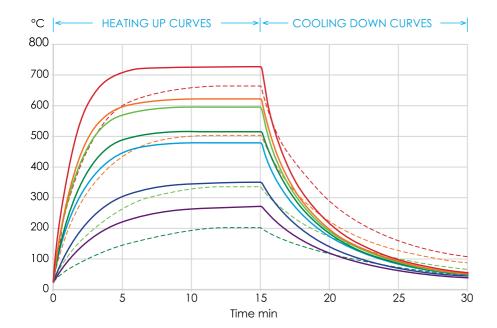








SFSE Full Flat Solid Element, Standard Wattages 250W 400W 500W 600W 800W . Standard Voltage 230V. Average weight 192g.



Heating up cooling down curves based on FFE tests of average surface temperature with an infrared thermometer set at an emissivity of 0.9 (element mounted in an aluminised steel reflector, RAS)

	FFE	HFE	QFE	SFSE
_	1000W	500W	250W	
_	750W			750W
_	650W	325W		650W
_	500W	250W	125W	500W
_	400W	200W		400W
	250W	125W		250W
	150W			150W

	LFFE
 -	1400W
 -	750W
	350W
 -	150W

Wattage	150W	250W	300W	400W	500W	650W	750W	1000W
Mean surface temperature	272 °C	351 ℃	405 °C	480 °C	515 °C	596°C	624°C	726 <i>°</i> C
Max power density	9 kW/m²	15 kW/m ²	18 kW/m²	24 kW/m²	30 kW/m²	39 kW/m²	45 kW/m ²	60 kW/m ²
Radiant Watt density at 100mm	0.10 W/cm ²		0.25 W/cm ²		0.47W/cm ²			

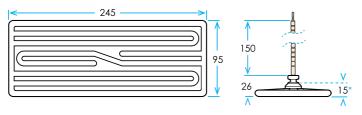
 $Based \ on \ tests \ of \ average \ surface \ temperature \ with \ an \ infrared \ thermometer \ set \ at \ an \ emissivity \ of \ 0.95 \ (element \ mounted \ in \ an \ aluminised \ steel \ reflector, RAS)$

Wattage	125W	150W	200W	250W	325W	500W
Mean surface temperature	351 °C	405 °C	480 °C	515 °C	596°C	726 <i>°</i> C
Max power density	15 kW/m ²	18 kW/m²	24 kW/m ²	30 kW/m ²	39 kW/m²	60 kW/m ²

Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.95 (element mounted in an aluminised steel reflector, RAS)

Wattage	125W	250W
Mean surface temperature	515 °C	726°C
Max power density	30 kW/m ²	60 kW/m ²

Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.95(element mounted in an aluminised steel reflector, RAS)


Wattage	150W	250W	300W	400W	500W	650W	750W
Mean surface temperature	272 °C	351 °C	405 °C	480 °C	515 °C	596°C	624°C
Max power density	9 kW/m²	15 kW/m ²	18 kW/m²	24 kW/m ²	30 kW/m ²	39 kW/m ²	45 kW/m ²
Radiant Watt density at 100mm		0.23 W/cm ²		0.39 W/cm ²		0.71 W/cm ²	0.81 W/cm ²

Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.9 (element mounted in an aluminised steel reflector, RAS)

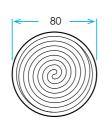
LFFE Large Flat Solid Element,

Standard Wattages 150W 350W 750W 1400W.

Standard Voltage 230V.

Average weight 342q.

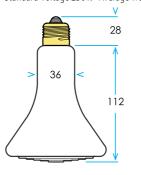
CERAMIC EDISON SCREW ELEMENTS

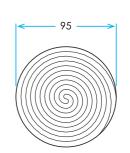

Useful wavelength range 2 to 10µm

Ceramic Edison Screw Elements (ESEB, ESES, ESER, ESEXL) are industry standard infrared bulbs used primarily in the area of reptile/animal/pet health care. These ceramic bulbs provide the infrared heat required without any of the negative effects of a light output that can disturb the day/night sleeping cycle of the reptile/animal. Ceramicx hollow cast bulbs consist of a high temperature FeCrAl resistance alloy embedded in a specially formulated ceramic body allowing operating temperature up to 530°C and a maximum power of 400W (ESEXL Model Only). The face of the ESE is circular and convex in design, producing a circular outward trending radiant output.

ESES Edison Screw Element Small,

Standard Wattages 60W 100W. Standard Voltage 230V. Average weight 113g



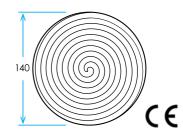


ESER Edison Screw Element Regular,

Standard Wattages 150W 250W. Standard Voltage 230V. Average weight 165g

ESEB Edison Screw Element Bulb,

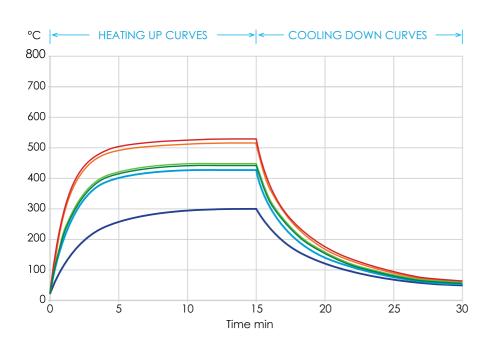
Standard Wattages 60W 100W. Standard Voltage 230V. Average weight 112g



(**E N**)

ESEXL Edison Screw Element Large,

Standard Wattages 300W 400W. Standard Voltage 230V. Average weight 253g



Wattage	150W	350W	750W	1400W
Mean surface temperature	204°C	338°C	501 °C	667 °C
Max power density	5.4 kW/m²	12 kW/m²	27 kW/m ²	50 kW/m ²

 ϵ

Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.9 (element mounted in an aluminised steel reflector)

Heating up cooling down curves based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.9 (element mounted in an aluminised steel reflector, RAS)

	ESES	ESER	ESEB	ESEXL
_				400W
		250W		
_				300W
_		150W		
	100W		100W	
_	60W		60W	

	ESES		ESER		ESEB		ESEXL	
Wattage	60W	100W	150W	250W	60W	100W	300W	400W
Mean surface temperature	300°C	426°C	441°C	516 °C	300°C	426°C	450°C	530 °C
Max power density	7.3kW/m²	12 kW/m ²	15kW/m²	25 kW/m ²	13.5kW/m ²	22.5 kW/m ²	22.5kW/m ²	30 kW/m ²

Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.9 $\,$

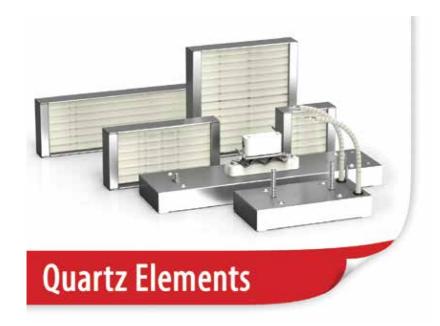
UNIT CONVERSION

Celsius (°C) - Fahrenheit (°F) °F = (°C x 1.8) + 32.0

FTE 1000W, mean surface temperature $726^{\circ}\text{C} = (726 \text{ x } 1.8) + 32.0 = 1338.8 ^{\circ}\text{F}$

Millimetres (mm) - inches (in) in = mm x 0.039370

FTE 1000W, dimensions 245 x 60 mm = $(245 \times 0.039370) \times (60 \times 0.039370) = 9.65 \times 2.36$ in


Grams (g) - ounces (oz) $oz = g \times 0.035274$

FTE 1000W, average weight $192g = 192 \times 0.035274 = 6.77$ oz

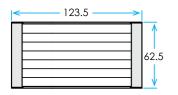
Watts per meter square (W/m^2) - Watts per inch square (W/in^2) $W/in^2 = W/m^2 \times 0.000645$

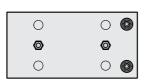
FTE 1000W, max power density 60 W/m² = $60 \times 0.00645 = 0.387 \text{W/in}^2$

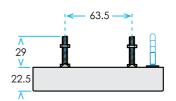
QUARTZ ELEMENTS

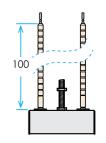
Useful wavelength range 1.5 to 8µm

Quartz infrared heating elements provide medium wave infrared radiation. They are favoured in industrial applications where a more rapid heater response is necessary, including systems with long heater off cycles.


Quartz infrared heating elements are particularly effective in systems where rapid heater response and/or zone controlled heating is required.

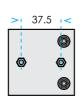

They have a broad emission spectrum from around 1.4 to 8 microns, slightly shorter in wavelength than ceramic elements.

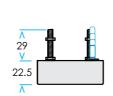

Pillared quartz elements have the same mounting fixture as ceramic elements allowing easy replacement.

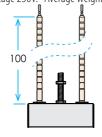

FQE Full Quartz Element, Standard Wattages 150W 250W 300W 400W 500W 650W 750W 1000W. Standard Voltage 230V. Average weight 403g.

HQE Half Quartz Element, Standard Wattages 150W 250W 400W 500W. Standard Voltage 230V. Average weight 210g.

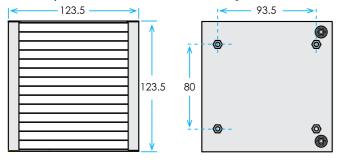


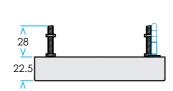


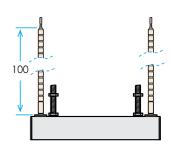


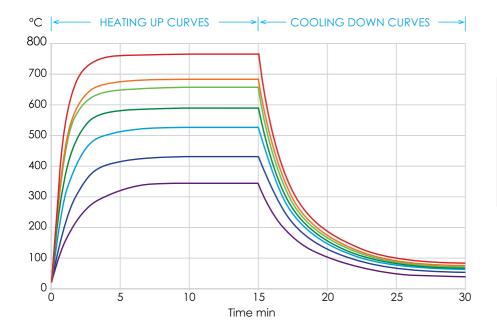


QQE Quarter Quartz Element, Standard Wattages 150W 250W. Standard Voltage 230V. Average weight 144g.








SQE Square Quartz Element, Standard Wattages 150W 650W, 1000W. Standard Voltage 230V. Average weight 401g.

Heating up cooling down curves based on FQE tests of average surface temperature with an infrared thermometer set at an emissivity of 0.7 (element mounted in an aluminised steel reflector, RAS)

	FQE	HQE	QQE	SQE
—	1000W	500W	250W	1000W
_	750W			750W
_	650W	325W		650W
_	500W	250W		500W
_	400W			400W
_	250W			250W
_	150W			150W
	PFQE	PHQE		

Wattage	150W	250W	300W	400W	500W	650W	750W	1000W
Mean surface temperature	343 °C	438 °C	477 °C	542 °C	593 °C	664°C	690 °C	772 °C
Max power density	9 kW/m²	15 kW/m²	18 kW/m²	24 kW/m ²	30 kW/m ²	39 kW/m²	45 kW/m ²	60 kW/m²
Radiant Watt density at 100mm	0.10 W/cm ²		0.26 W/cm ²		0.48 W/cm ²	0.69 W/cm ²		1.14 W/cm ²

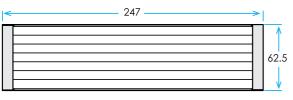
Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.7 (element mounted in an aluminised steel reflector, RAS)

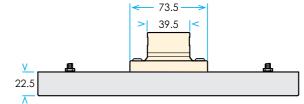
Wattage	150W	250W	325W	400W	500W
Mean surface temperature	477 °C	493 °C	644°C	709 °C	772 °C
Max power density	18 kW/m ²	30 kW/m ²	39 kW/m ²	48 kW/m ²	60 kW/m ²
Radiant Watt density at 100mm	0.26 W/cm ²		0.69 W/cm ²		1.14 W/cm ²

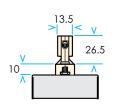
Based on tests of average surface temperature with an infrared thermometer set at an emissivity of 0.7 (element mounted in an aluminised steel reflector, RAS)

Wattage	150W	250W
Mean surface temperature	642 °C	772 <i>°</i> ℃
Max power density	36 kW/m ²	60 kW/m²
Radiant Watt density at 100mm		1.14 W/cm ²

 $Based \ on \ tests \ of \ average \ surface \ temperature \ with \ an \ infrared \ thermometer \ set \ at \ an \ emissivity \ of 0.7 \ (element \ mounted \ in \ an \ aluminised \ steel \ reflector, RAS)$

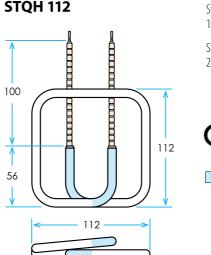

Wattage	150W	250W	300W	400W	500W	650W	750W	1000W
Mean surface temperature	343 °C	438 °C	477 °C	542 °C	593 °C	644°C	690 °C	772°C
Max power density	9 kW/m²	15 kW/m ²	18 kW/m²	24 kW/m²	30 kW/m ²	39 kW/m ²	45 kW/m ²	60 kW/m ²


 ϵ


 $Based \ on \ tests \ of \ average \ surface \ temperature \ with \ an \ infrared \ thermometer \ set \ at \ an \ emissivity \ of 0.7 \ (element \ mounted \ in \ an \ aluminised \ steel \ reflector, RAS)$

PFQE Pillared Full Quartz Element, Standard Wattages 150W 250W 400W 500W 650W 750W 1000W. Standard Voltage 230V. Average Weight 403g

STQH Single tube Quartz Heaters,


STQH 100

Standard Wattage Range 150W - 400W.

Standard Voltage 230V

 ϵ

Unheated area

Standard Wattage Range 150W - 400W.

Standard Voltage 230V

 ϵ

Unheated area

PANEL HEATERS

Useful wavelength range 4 to 6µm

They are a neat, easily mounted and readily expanded heating solution.

Infrared panel heaters are custom built infrared heaters operating primarily in the long wave range. The basic construction consists of a resistance coil embedded into a ceramic fibre board which is then located behind an emitting surface of either anodised aluminium or glass ceramic. This is then placed inside a 75mm high aluminised steel housing which normally contains 50mm of thermal insulation to reduce heat loss through the rear of the unit.

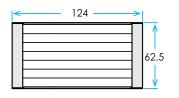
STANDARD OPTIONS (Other options available on request. Please contact us for further details.)

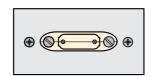
Emitting surface Glass ceramic face - Very good radiant efficiency, high percentage transmission of radiant output in

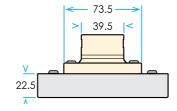
medium to short wave range, surface can be easily cleaned.

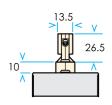
Anodised aluminium face - Good radiant efficiency, very robust, surface sheet can be easily cleaned or

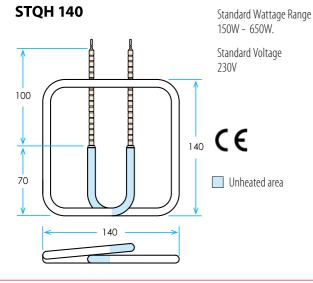
replaced if damaged by molten material.

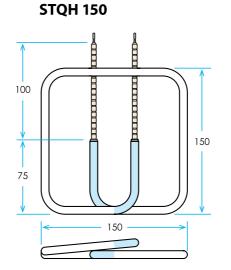

Electrical terminations Open 2P terminal block, Terminal block with cover, M6 or 1/4" threaded stud, Type K thermocouple with

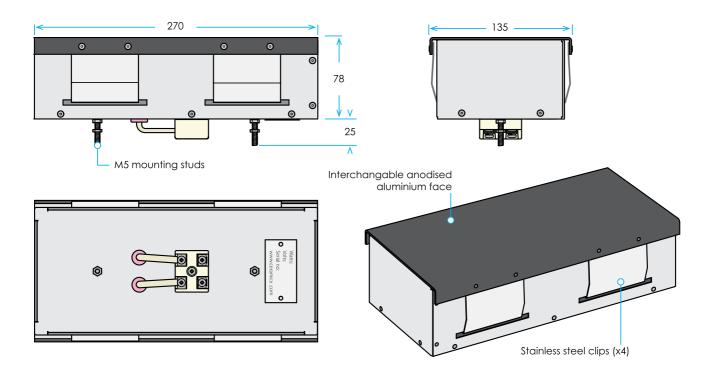

fixed high temperature socket and removable plug


Fixing studs M5/M6/M8/0.25" x 25mm long


PHQE Pillared Half Quartz Element, Standard Wattages 150W 250W 400W 500W. Standard Voltage 230V. Average Weight 268g


 ϵ



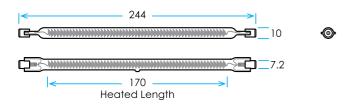


Standard Wattage Range 150W - 650W. Standard Voltage 230V

Unheated area

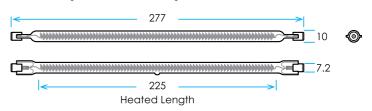
Sample panel heater, black anodised aluminium face, 270 x 135mm, 500W, 230V, with open 2P terminal block connection.

QUARTZ TUNGSTEN/ QUARTZ HALOGEN TUBES

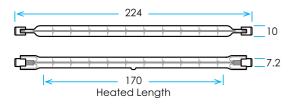

The tungsten filament used in these quartz tungsten heaters is the porcupine or star type coil, which can be operated at temperatures up to 1500°C (2732°F), with a peak wavelength emission of approximately 1.6 microns. It reaches top temperatures within seconds.

Halogen heaters are filled with a halogen gas to allow the supported tungsten filament to reach temperatures as high as 2600°C (4712°F). Peak emissions for these tubes is around 1 micron.

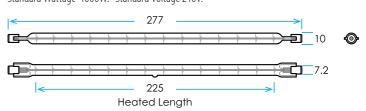
These emitters heat up and cool down within seconds making them particularly suitable for systems requiring short cycle times.


QTS Quartz Tungsten Short,

Standard Wattage 750W. Standard Voltage 240V.


QTM Quartz Tungsten Medium,

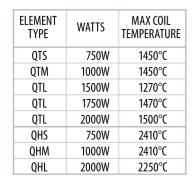
Standard Wattage 1000W. Standard Voltage 240V.


QHS Quartz Halogen Short,

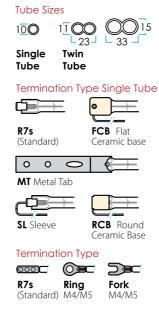
Standard Wattage 750W. Standard Voltage 240V.

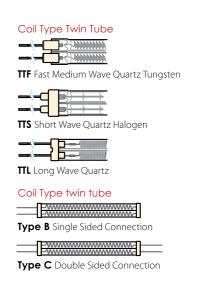
QHM Quartz Halogen Medium,

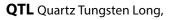
Standard Wattage 1000W. Standard Voltage 240V.

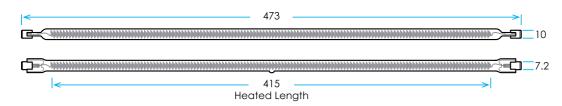


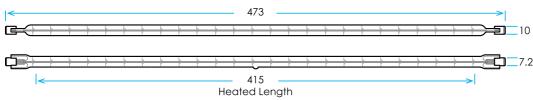
Bespoke sizes are also available but a minimum order of 25 pieces applies.


Twin tube medium wave heater, 750W, 240V, 400 x 23.3 x 11.7mm, terminal type B, 3,000 mm leads, Gold reflective coating.

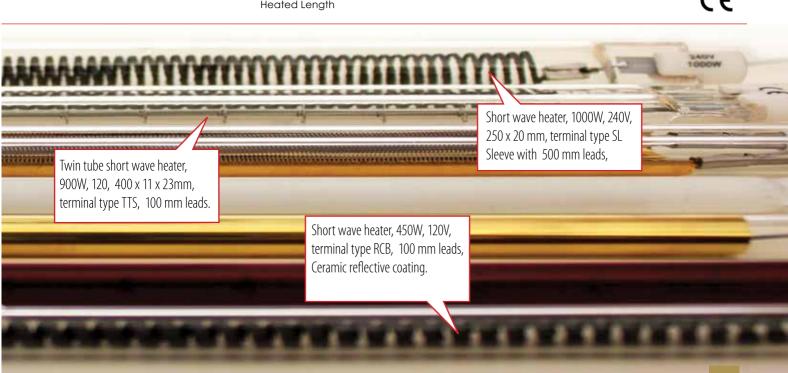

Quartz halogen tube, 2,000W, 240V, 473mm, terminal R7s, Ruby coating. Quartz tungsten tube, 450W, 120V, 342mm, terminal R7s, Gold reflective coating.


Quartz tungsten tube, 450W, 120V, 342mm, terminal RCB, 100mm leads. Ceramic coating.


Coatings Ceramic Gold Ruby


Standard Wattage 1500W 1750W 2000W. Standard Voltage 240V.

 ϵ


QHL Quartz Halogen Long,

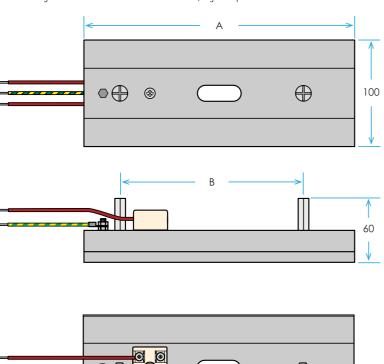
Standard Wattage 1000W 1750W 2000W. Standard Voltage 240V.

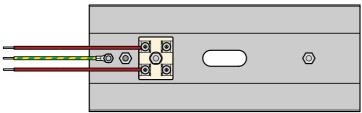
 ϵ

Product Guide 49

REFLECTORS AND PROJECTORS

Highly reflective aluminised steel projectors and reflectors

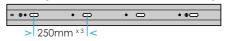

At Ceramicx, our reflectors are designed to cater for a wide range of ceramic and quartz infrared emitters. units can be mounted individually or side-by-side forming infrared heat panels.


Our projectors are designed to cater to a wide range of ceramic elements and are the ideal solution where positional heat is required economically, efficiently and guickly.

RAS Reflector Aluminised Steel

Reflector material 0.75mm polished aluminised steel.

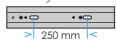
Mounting studs with M6 internal thread. 300mm, high temperature leads.


RAS 5 Suitable for FTE, FFEH and FFE elements.

Overall length $A = 1,254 \, \text{mm}$ Distance between fittings $B = 1,028 \, \text{mm}$

RAS 4 Suitable for FTE, FFEH and FFE elements.

Overall length A = 1,004mm Distance between fittings B = 778 mm

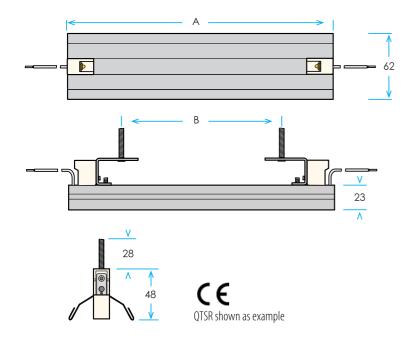

RAS 3 Suitable for FTE, FFEH and FFE elements.

Overall length A = 754 mm Distance between fittings B = 528 mm

RAS 2 Suitable for FTE, FFEH and FFE elements.

Overall length A = 504 mm Distance between fittings B = 278 mm

RAS 1 Suitable for FTE, FFEH and FFE elements.


Overall length A = 254 mm Distance between fittings B = 172 mm

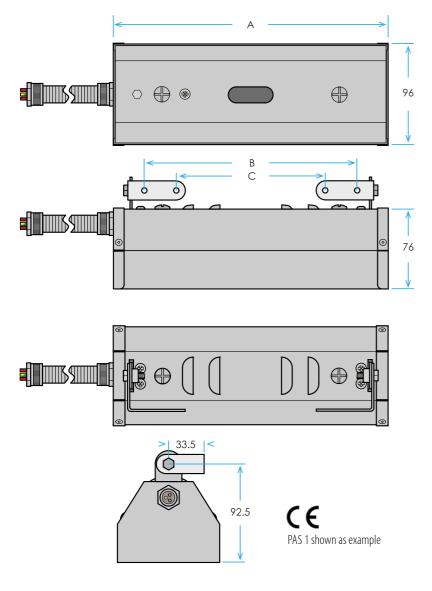
RAS 0.5 Suitable for HTE, HFEH and HFE elements.

Overall length A = 160 mm Distance between fittings B = 96 mm

QTR Quartz Tungsten / Halogen Reflectors

Reflector manufactured from 0.75 mm polished aluminised steel. 2 x M5 fixing bolts

R7s holders with 200mm leads Ø 0.75mm with PTFE-insulation


QTSR Quartz Tungsten Halogen Short Reflector Suitable for QTS/QHS tubes with R7s terminations Overall length A = 250mm Distance between fittings B = 153mm

QTMR Quartz Tungsten Halogen Medium Reflector Suitable for QTM/QTL tubes with R7s terminations Overall length A = 300 mm Distance between fittings B = 203 mm

QTLR Quartz Tungsten Halogen Long Reflector Suitable for QTL/QHL tubes with R7s terminations Overall length A = 497mm Distance between fittings B = 400mm

PAS Projector Aluminised Steel

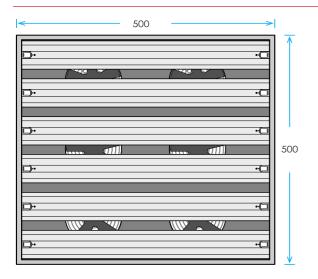
Reflector material 0.75mm polished aluminised steel. Ø16 mm metal conduit, length 1.5m

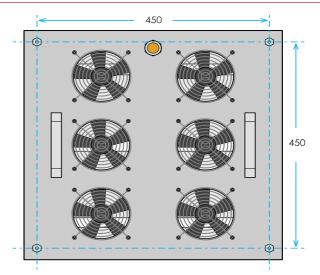
PAS 5 Suitable for FTE, FFEH and FFE elements. Overall length A = 1,258 mm B = 1,200 mm C = 1,140 mm

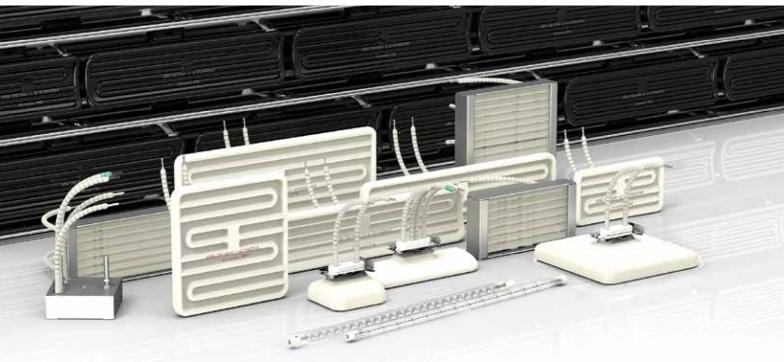
PAS 4 Suitable for FTE, FFEH and FFE elements. Overall length A = 1,008 mm B = 950 mm C = 890 mm

PAS 3 Suitable for FTE, FFEH and FFE elements.

Overall length A = 758 mm B = 700mm C = 640mm

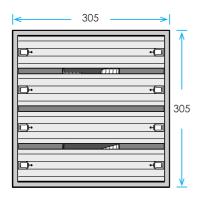

PAS 1 Suitable for FTE, FFEH and FFE elements. Overall length A = 258 mm B = 200 mm C = 140 mm

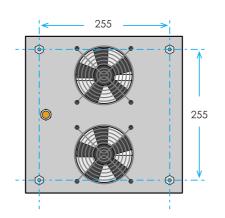

• • • •

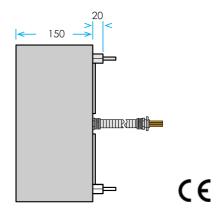


FAST IR

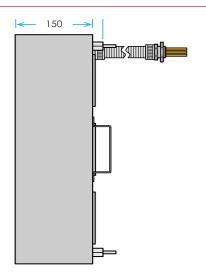
These compact robust systems form an ideal installation for quartz heating elements - quartz tungsten/halogen glass tube emitters. Optimum efficiency is achieved by highly polished aluminium steel reflection and rear mounted axial flow fans, which eliminate rear convection losses and keep the reflectors cool for better directional quality on the infrared output. The external body which manufactured from aluminium can be maintained at "touch safe" temperature.







FAST IR 305 Suitable for 1000W Quartz tungsten/Halogen heaters QTM or QHM. Standard FastIR 305 designed to hold 4 tubes (4kW), also available as 5 tube (5kW).



4 x Aluminium stand off with M6 threaded screw with fixing nut.

Electrical termination made via 1.5m of 16mm diameter flexible metal conduit with additional 0.5m of glass fibre insulated NPC conductors. 2 rear mounted axial flow fans. Suitable for heater type QTM (Quartz Tungsten Medium) or QHM (Quartz Halogen Medium) tubes with R7s termination, 240V (1000W maximum) See page 48 for details of tubes.

FAST IR 500 Suitable for 1500W, 1750W, 2000W Quartz Tungsten heaters QTL or 2000W Quartz Halogen heaters QHL.

Standard FastIR 500 designed to hold 6 tubes (12kW) also available as 7 tube (14kW). 4 x Aluminium stand off with M6 threaded screw with fixing nut.

Electrical termination made via 1.5m of 25mm diameter flexible metal conduit with additional 0.5m of glass fibre insulated NPC conductors.

6 rear mounted axial flow fans.

Suitable for heater types QTL (Quartz Tungsten Long) or QHL (Quartz Halogen Long) tubes with R7s termination, 240V (2000W maximum)

See page 49 for details of tubes

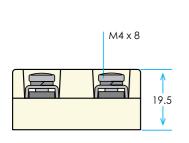
Please note other configurations are available on request.

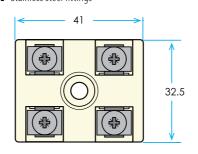
CE

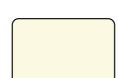
Solutions

Research and development

INFRARED FOR INDUSTRY


ACCESSORIES


Ceramicx manufactures a range of accessories, including steatite press components.

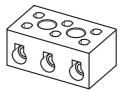

Steatite ceramic dust has proven itself to be the material-of-choice for the manufacture of electrical insulators thanks to its good mechanical strength, ideal dielectric properties and high temperature resistivity of up to 1000°C

(E

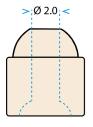
2P Ceramic terminal block Stainless steel fittings

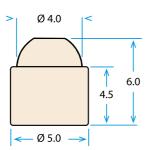
Maximum voltage:	500V	
Maximum temperature:	450°C	
Maximum current:	20A*	
Maximum cable CSA (solid):	4.0mm sq.	
Maximum cable CSA (stranded/with ferrule)	2.5mm sq.	
*Up to 30A permissible at lower temperatures.		

2P Mini Ceramic terminal block


Nickel galvanised brass inserts. Zinc plated steel screws. 21 x 18 x 15mm

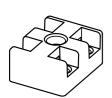
TB2 Ceramic terminal block


Plated brass inserts. Nickel galvanised screws. 34 x 30 x 22mm


TB3 Ceramic terminal block

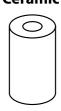
Plated brass inserts. Nickel galvanised screws. 51 x 30 x 22mm

Ceramic beads beads strung



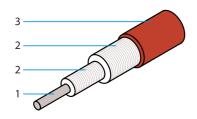
Material: Steatite C-221

2P Terminal block no fittings


40 x 32 x 20mm

Grommet set Ceramic grommet and star-lock

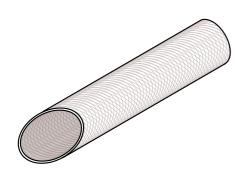
fastener set, used as insulator in sheet metal with 6mm hole 9.5 x 7.5 mm


Ceramic tubes

Ø5 x 11.5 mm Material: Steatite C-221

High temperature NPC cable

- 1. Flexible nickel plated copper core
- 2. Multiple silicone-impregnated glass lapping
- 3. Silicone coated fibreglass braid

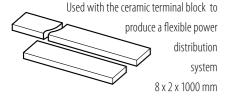

Continuous working temperature: -60°C to +280°C

Peaks at 350°C

Working voltage: 300/500V

Nominal core cross –section	Nominal core stranding	Outer cable diameter	Linear weight approx
0.75 mm ²	11 x 0.30	2.4 mm	11.9 kg/km
1.50 mm ²	21 x 0.30	2.8 mm	20.5 kg/km
2.50 mm ²	35 x 0.30	3.2 mm	32.2 kg/km
4.00 mm ²	56 x 0.30	4.0 mm	50.1 kg/km

Fibre glass braided sleeving



Fibre glass braided sleeving non-impregnated
Continuous working temperature: -60°C to +450°C

Nominal Inner diameter	Min. wall thickness	Linear weight approx
2 mm	0.20	3.10 kg/km
4 mm	0.30	7.60 kg/km
6 mm	0.30	12.00 kg/km

Stainless steel buss bar

R7s ceramic holder

For standard quartz tungsten/halogen tubes

Steel wave and spring clip

For further details of our products see our website

www.ceramicx.com

CERAMIC ELEMENTS - Trough elements FTE, HTE, QTE, QCE, LFTE. Hollow elements FFEH, HFEH, QFEH, SFEH. Flat elements FFE, HFE, QFE, SFSE, LFFE. Ceramic bulbs ESEB, ESES, ESER, ESEXL QUARTZ ELEMENTS - Standard quartz elements FQE, HQE, QQE, SQE. Pillared quartz elements PFQE, PHQE. Quartz square tube elements STQH100, STQH112, STQH140, STQH150. QUARTZ TUNGSTEN/HALOGEN TUBES - Quartz tungsten tubes QTS, QTM, QTL. Quartz halogen tubes QHS, QHM, QHL. REFLECTORS AND PROJECTORS - Reflectors RASO.5, RAS1, RAS2, RAS3, RAS4, RAS5, RAS6. Projectors PAS , PAS2, PAS3, PAS4, PAS5. QTS reflectors QTSR, QTMR, QTLR. EQUIPMENT - Fast IR systems Fast IR 305, Fast IR 500. Panel Heaters. Spot heaters. Furnace heaters. Test ovens. Clam shell ovens. ACCESSORIES - High temp connectors, 2P terminal block, 2P mini, TB2, TB3, Buss bar. Mounting components Flat ceramic base holder, R7s holder, Steel wave and spring set, Dust press components Ceramic beads, Grommet and star lock, Ceramic tubes, 2P block. High temperature cable 0.75, 1.5, 2.5, 4.0, Fibre glass sleeving.

www.ceramicx.co.uk

www.ceramicx.com.tr

Ceramicx Ltd. Gortnagrough, Ballydehob, Co. Cork, P81 HO26, Ireland.

Tel: +353 28 37510 Fax: +353 28 37509

sales@ceramicx.com www.ceramicx.com

Ceramicx Ltd. 20 Station Road, Cambridge, CB1 2DJ, U.K.

Tel: +44 1223 653159

sales@ceramicx.co.uk www.ceramicx.co.uk

Ceramicx İnfrared Teknolojileri Sanayi ve Tic. Ltd. Şti.

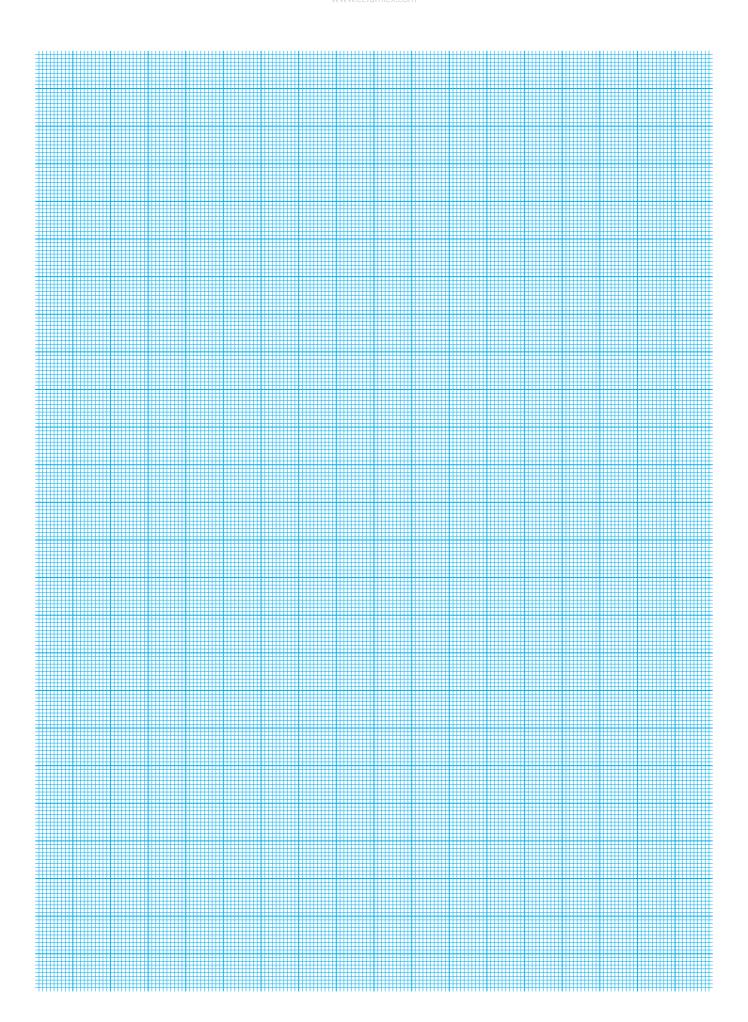
İkitelli O.S.B. Giyim Sanatkarlari İş ve Tic. Mrkz.3. Ada A Blok No:102, Başakşehir, Istanbul / Türkiye.

Tel: +90 212 549 4839 Mobile:+90 544 237 2649

satis@ceramicx.com www.ceramicx.com.tr Registered address

Ceramicx Ltd. Gortnagrough, Ballydehob, Co. Cork, P81 H026, Ireland.

Registered in Ireland No. 183040


Directors.

Mr. F. Wilson, Mrs. G. Wilson, Dr. C. Wilson.

VAT No. IE6583040T

DISTRIBUIDOR / DISTRIBUTOR - PORTUGAL

Resitec, Lda Zona Industrial dos Pousos, 2410-201 Leiria, PORTUGAL Tel. +351 244 800 070 Fax. +351 244 800 079 email. resitec@resitec.pt

www.resitec.pt

Ceramicx Ltd. Gortnagrough, Ballydehob, Co. Cork, P81 HO26, Ireland. Tel. +353 28 37510 Fax. +353 28 37511 e.mail. sales@ceramicx.com